By Topic

Ionomeric electroactive polymer artificial muscle for naval applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paquette, J.W. ; Dept. of Mech. Eng., Univ. of Nevada, Reno, NV, USA ; Kim, K.J.

Specialized propulsors for naval applications have numerous opportunities in terms of research, design, and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. ionomeric electroactive polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electroactive polymer, ionic polymer-metal composites (IPMCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction, and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:29 ,  Issue: 3 )