Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Force generation for locomotion of vertebrates: skeletal muscle overview

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
King, A.M. ; Cardiac Mechano-Electr. Feedback Group, Univ. Lab. of Physiol., Oxford, UK ; Loiselle, D.S. ; Kohl, P.

Locomotion is essential for vertebrate survival. Forces required for movement are generated by skeletal muscle. Skeletal muscle shortening and/or force generation occur via parallel sliding of two protein filaments: actin and myosin. This is driven by the cycling of cross-bridges, whose unitary nanometer length change and picoNewton force output are fueled by conversion of chemical energy, stored in the form of adenosine triphosphate, into a change in myosin protein configuration. The range of force and length changes of a muscle is determined by factors such as muscle cross section, fiber angle, tendon attachment, and lever geometry, but also by the metabolic pathways available for adenosine triphosphate synthesis and by enzymes involved in cross-bridge cycling. In addition, muscle mechanical activity is affected by the extent of actin and myosin filament overlap. Force output can be graded by selective recruitment of motor units and/or by variation of force output from individual units. The cost of locomotion is subject to species differences and is affected by the environment and form of movement, with an energy efficiency of up to 0.4. Overall, design principles of vertebrate skeletal muscle may serve as an interesting reference point for novel actuator technologies.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:29 ,  Issue: 3 )