Cart (Loading....) | Create Account
Close category search window
 

Metro network design methodologies that build a next-generation network infrastructure based on this generation's services and demands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Skoog, R. ; Telcordia Technol. Inc., Red Bank, NJ, USA ; Von Lehmen, Ann ; Clapp, G. ; Gannett, J.W.
more authors

This paper describes two key network architecture design concepts that relate to evolving existing transport networks into economically viable next-generation optical networks. Today's metropolitan transport networks largely consist of synchronous optical network/synchronous digital hierarchy rings or switch-to-switch fiber connections for some form of optical Ethernet. The result is an optical-electrical-optical infrastructure that has limited use in providing wavelength services. Wavelength-division multiplexing (WDM) is the enabling technology for wavelength services, but it has limited penetration in the metropolitan area due to its cost justification being dependent primarily on fiber relief. The first part of this paper shows how existing services, primarily using time-division-multiplexing (TDM) transport, can be used to economically justify a WDM infrastructure while achieving significantly lower costs than legacy design techniques would produce. Dynamic bandwidth-on-demand (BoD) service is another elusive goal envisioned for next-generation metropolitan networks. This paper addresses how an economically viable BoD infrastructure can be built based on revenues from existing enterprise services rather than relying on revenues from new and unproven services. Quantitative analyses, presented in the paper, show the key parameters that determine when BoD services will be used, how bandwidth granularity affects BoD decisions, and how the customer's use of BoD drives service provider network design considerations.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 11 )

Date of Publication:

Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.