By Topic

A generalized protection framework using a new link-State availability model for reliable optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yurong Huang ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; Wushao Wen ; J. P. Heritage ; B. Mukherjee

This paper investigates a generalized protection framework for availability-guaranteed connection provisioning in an optical wavelength-division-multiplexed (WDM) network. Reliability is a crucial concern in high-speed optical networks. A service level agreement (SLA), which mandates high service availability even in the face of network failures must be met in provisioning a reliable connection. In this study, a new link-state-modeling mechanism is developed to form a dynamic link-state parameter called link and resource availability (LRA), which represents physical-layer availability and resource status for an optical link. Such up-to-date link-state information can be used by a standard link-state routing protocol to efficiently provision reliable connections. Based on the link-state availability model, LRA, a connection-provisioning algorithm is then proposed which can guarantee customers' availability requirements. A new generalized protection model is developed through dynamic LRA-based provisioning. Numerical results demonstrate the performance of the proposed provisioning approach to be promising.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 11 )