By Topic

Mitigation of noneliminated harmonics of SHEPWM three-level multipulse three-phase active front end converters with low switching frequency for meeting standard IEEE-519-92

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pontt, J. ; Dept. of Electron., Univ. Tecnica Federico Santa Maria, Valparaiso, Chile ; Rodriguez, J. ; Huerta, R.

Three-level neutral-point clamped (NPC) active-front-end three-phase (3LAFE) converters can be applied to high-power medium voltage applications, with four-quadrant unity-power-factor operation, allowing a broad range for power conversion systems, such as decentralized energy distribution and utilization. Switching losses and network interaction limit the operation of 3LAFE high-power converters, especially when GTO-converters are used. This is why low switching frequency and reduced harmonic distortion are the main goals when using optimum pattern pulsewidth modulation (PWM) where the selective harmonic elimination modulation method (SHEPWM) is used. This paper introduces a simple strategy to choose a good operating point for two 3LAFE converters in a 12-pulse configuration based on the behavior of noneliminated harmonics by SHE method. This strategy allows accomplishing the meeting of the IEEE Std. 519-92 and jointly, the minimization or elimination of harmonics filters. A complete characterization is given as a base of SHE method and for noneliminated harmonics behavior, as well as the full explanation of the optimization strategy. Experimental results show the strategy effectiveness for reducing harmonic distortion and meeting IEEE Std. 519-92.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 6 )