Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Fusing images with different focuses using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Shutao Li ; Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha, China ; Kwok, J.T.-Y. ; Tsang, I.W. ; Yaonan Wang

Many vision-related processing tasks, such as edge detection, image segmentation and stereo matching, can be performed more easily when all objects in the scene are in good focus. However, in practice, this may not be always feasible as optical lenses, especially those with long focal lengths, only have a limited depth of field. One common approach to recover an everywhere-in-focus image is to use wavelet-based image fusion. First, several source images with different focuses of the same scene are taken and processed with the discrete wavelet transform (DWT). Among these wavelet decompositions, the wavelet coefficient with the largest magnitude is selected at each pixel location. Finally, the fused image can be recovered by performing the inverse DWT. In this paper, we improve this fusion procedure by applying the discrete wavelet frame transform (DWFT) and the support vector machines (SVM). Unlike DWT, DWFT yields a translation-invariant signal representation. Using features extracted from the DWFT coefficients, a SVM is trained to select the source image that has the best focus at each pixel location, and the corresponding DWFT coefficients are then incorporated into the composite wavelet representation. Experimental results show that the proposed method outperforms the traditional approach both visually and quantitatively.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 6 )