Cart (Loading....) | Create Account
Close category search window
 

Encoding nondeterministic fuzzy tree automata into recursive neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gori, M. ; Dipt. di Ingegneria dell''Informazione, Univ. di Siena, Italy ; Petrosino, A.

Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of fuzzy finite-state dynamics in high-order recurrent networks.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.