Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Contextual processing of structured data by recursive cascade correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Micheli, A. ; Comput. Sci. Dept., Univ. of Pisa, Italy ; Sona, D. ; Sperduti, A.

This paper propose a first approach to deal with contextual information in structured domains by recursive neural networks. The proposed model, i.e., contextual recursive cascade correlation (CRCC), a generalization of the recursive cascade correlation (RCC) model, is able to partially remove the causality assumption by exploiting contextual information stored in frozen units. We formally characterize the properties of CRCC showing that it is able to compute contextual transductions and also some causal supersource transductions that RCC cannot compute. Experimental results on controlled sequences and on a real-world task involving chemical structures confirm the computational limitations of RCC, while assessing the efficiency and efficacy of CRCC in dealing both with pure causal and contextual prediction tasks. Moreover, results obtained for the real-world task show the superiority of the proposed approach versus RCC when exploring a task for which it is not known whether the structural causality assumption holds.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 6 )