By Topic

Understanding and enhancing polarization in complex materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Recent advances in theoretical methods and high-performance computing allow for reliable first-principles investigations of complex materials. This article focuses on calculating and predicting the properties of piezoelectrics and "designing" new materials with enhanced piezoelectric responses. This paper considers two systems: boron-nitride nanotubes (BNNTs) and polymers in the polyvinylidene fluoride (PVDF) family.

Published in:

Computing in Science & Engineering  (Volume:6 ,  Issue: 6 )