By Topic

Electroabsorption enhancement in tensile strained quantum wells via absorption edge merging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gomatam, Badri N. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA ; Anderson, N.G.

Electroabsorption in quantum wells under biaxial tension is investigated theoretically. It is found that enhanced electroabsorption due to a field-induced merging of the light and heavy hole absorption edges can be achieved in these structures at moderate operating fields. Calculations showing this merging and electroabsorption enhancement for InxGa1-xAs-InP and GaAsxP1-x-Al0.35Ga0.65As quantum well structures are described. Trade-offs involving the advantages of merged absorption edges are identified through comparisons of tensile strained modulators utilizing the merging effect of analogous lattice matched structures. Optimal structures for operation at 1.55 μm in InxGa1-xAs-InP and 0.77 μm in GaAsxP1-x-Al0.35Ga0.65As are identified, and the sensitivities of their electroabsorption characteristics to material and structural parameters are examined

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 6 )