By Topic

Microfabricated polymer analysis chip for optical detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fleger, M. ; Univ. Dortmund, Germany ; Siepe, D. ; Neyer, A.

A coupling between multimode polymer waveguides and microfluidic channels on a polymethylmethacrylate (PMMA) capillary electrophoresis (CE)-chip for optical analytical applications has been successfully realised. This technology allows the integration of polymer optical waveguides together with hermetically sealed fluidic channels. The microchannels and waveguides are made in PMMA by the approved hot-embossing technology. The technology developed for the fabrication of polymer waveguides on the microfluidic chip offers the possibility of great flexibility in the choice of core materials, design and alignment of the polymer waveguides. The integration of polymer waveguides on an analysis chip enables highly spatially resolved optical detection without the large and expensive conventionally used apparatus. The optical properties of the analytical system developed are verified by transmission and propagation loss measurements. The results of measurements prove the suitability of the presented device for optical applications between 440 and 800 nm. This was shown with absorbance measurements of the dye Sulfanilazochromotrop (SPADNS) within 50 μm fluidic channels.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 4 )