Cart (Loading....) | Create Account
Close category search window
 

Microthermoforming as a novel technique for manufacturing scaffolds in tissue engineering (CellChips®)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Giselbrecht, S. ; Inst. fur Medizintechnik und Biophys., Forschungszentrum Karlsruhe GrnbH, Germany ; Gietzelt, T. ; Gottwald, E. ; Guber, A.E.
more authors

The CellChip is a microstructured polymer scaffold, which favours a three-dimensional cultivation of cells within an array of cubic microcontainers. The manufacturing process used so far is microinjection moulding combined with laser-based perforation. In a first attempt to simplify the process, costly perforation was avoided by using commercially available, inexpensive microfiltration membranes for the bottom of the microcavities. Microthermoforming is a promising novel technique which allows the CellChip to be produced from thin film. Working pressures of approximately 4000 kPa were required for the adequate moulding of 50 μm thick films from three different polymers (polystyrene, polycarbonate, cyclo-olefin polymer). Integrating drafts and chamfers in micromoulds is not going to eliminate an uneven thickness profile, but reduces demoulding forces. Microthermoformed CellChips of polycarbonate were perforated by an ion track technique to guarantee a sufficient supply of medium and gases to the cells. The prestructured CellChips were irradiated with 1460 MeV xenon ions at a fluence of a few 106 ions/cm2. The tracks were etched in an aqueous solution of 5N NaOH at 30°C, which resulted in cylindrical pores approximately 2 μm in diameter. Microinjection-moulded, membrane-bonded and thermoformed CellChips were subjected to comparative examination for viability in a cell culture experiment with parenchymal liver cells (HepG2). The cells stayed viable over a period of more than 20 days. No significant differences in viability between injection-moulded, membrane-bonded, and thermoformed CellChips were observed.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 4 )

Date of Publication:

2 Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.