By Topic

Measurement of gain saturation coefficients in strained-layer multiple quantum-well distributed feedback lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yasaka, H. ; NTT Opto-Electron. Lab., Atsugi, Japan ; Takahata, K. ; Naganuma, M.

Gain saturation coefficients of unstrained- and strained-layer multiple-quantum-well lasers were measured experimentally. These coefficients were higher in lasers that had compressive strain in their active-layer wells: 2.45×10-17 cm3 with unstrained wells and 12.6×10-17 cm3 with strained wells. The higher gain saturation coefficient in lasers with strained active-layer wells is related to their higher linear TE mode gain coefficient. The linearity factor (K factor) between a laser's damping constant and the square of the laser's resonant frequency decreased slightly with the introduction of the strain in the laser's active layer wells. This factor, however, took the value of about 0.2×10-9 s for each of these lasers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 5 )