By Topic

Defect structure of high resistive CdTe: in prepared by vertical gradient freeze method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Franc, J. ; Inst. of Phys., Charles Univ., Prague, Czech Republic ; Babentsov, V. ; Fiederle, M. ; Belas, E.
more authors

High resistive and photosensitive CdTe doped with In aimed for fabrication of X- and gamma-ray detectors was produced by vertical gradient freeze method. A complex investigation of defects and compensation by a number of optical and photoelectrical mapping methods was performed. A model of energy levels dominating the recombination processes in the material was elaborated, where the role of In, and related complexes as well as native defects (Cd vacancy and its competes) is discussed.

Published in:

Nuclear Science Symposium Conference Record, 2003 IEEE  (Volume:5 )

Date of Conference:

19-25 Oct. 2003