By Topic

Automated breathing motion tracking for 4D computed tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
El Naqa, I. ; Washington Univ. Sch. of Med., St. Louis, MO, USA ; Low, D.A. ; Deasy, J.O. ; Amini, A.
more authors

4D-CT is being developed to provide breathing motion information for radiation therapy treatment planning. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. A major challenge of this process is the determination of the internal motion (trajectories) from the 4D CT data. Manual identification and tracking of internal landmarks is impractical. For example, in a single couch position, 512 × 512 × 12 pixel CT scans contains 3.1×105 voxels. If 15 of these scans are acquired throughout the breathing cycle, there are almost 47 million voxels to evaluate necessitating automation of the registration process. The natural high contrast between bronchi, vessels, other lung tissue offers an excellent opportunity to develop automated deformable registration techniques. We have been investigating the use motion compensated temporal smoothing using optical flow for this purpose. Optical flow analysis uses the CT intensity and temporal (in our case tidal volume) gradients to estimate the motion trajectories. The algorithm is applied to 3D image datasets reconstructed at different percentiles of tidal volumes. The trajectories can be used to interpolate CT datasets between tidal volumes.

Published in:

Nuclear Science Symposium Conference Record, 2003 IEEE  (Volume:5 )

Date of Conference:

19-25 Oct. 2003