By Topic

A gain-programmable transit-time-stable and temperature-stable PMT voltage divider

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Yaqiang Liu ; M.D. Anderson Cancer Center, Texas Univ., Houston, TX, USA ; Hongdi Li ; Yu Wang ; Tao Xing
more authors

A gain-programmable, transit-time-stable, temperature-stable photomultiplier (PMT) voltage divider design is described in this paper. The signal-to-noise ratio can be increased by changing a PMT gain directly instead of adjusting the gain of the pre-amplifier. PMT gain can be changed only by adjusting the voltages for the dynodes instead of changing the total high voltage between the anode and the photo-cathode, which can cause a significant signal transit-time variation that cannot be accepted by an application with a critical timing requirement, such as positron emission tomography (PET) or time-of-flight (TOF) detection/PET. The dynode voltage can be controlled by a digital analog converter (DAC) isolated with a linear optocoupler. The optocoupler consists of an infra-red light emission diode (LED) optically coupled with two phototransistors, and one is used in a servo feedback circuit to control the LED drive current for compensating temperature characteristics. The results showed that a 6 times gain range could be achieved; the gain drift was < 0.5% over a 20°C temperature range; 250 ps transit-time variation was measured over the entire gain range. A compact print circuit board (PCB) for the voltage divider integrated with a fixed-gain pre-amplifier has been designed and constructed. It can save about $30 per PMT channel compared with a commercial PMT voltage divider along with a variable gain amplifier. The pre-amplifier can be totally disabled, therefore in a system with large amount of PMTs, only one channel can be enabled for calibrating the PMT gain. This new PMT voltage divider design is being applied to our animal PET camera and time-of-flight/PET research.

Published in:

Nuclear Science Symposium Conference Record, 2003 IEEE  (Volume:5 )

Date of Conference:

19-25 Oct. 2003