By Topic

Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. R. Bowman ; US Naval Res. Lab., Washington, DC, USA ; M. J. Winings ; R. C. Y. Auyeung ; J. E. Tucker
more authors

The authors study the loss process in a uniformly pumped amplifier experiment. The impact of the loss mechanism on laser performance is discussed and its dependence on excited state density is considered. An extensive set of measurements was performed on flashlamp pumped YAG crystals doped with chromium, thulium, and holmium. Near-room-temperature laser operation on the 2.1 μm holmium transitions was characterized using a frequency selective resonator. Small signal gain and stored energy lifetimes were analyzed to determine the strength and dependence of loss mechanisms. The analysis of the thermal lensing experiments demonstrated a high degree of excess heat generation in this material

Published in:

IEEE Journal of Quantum Electronics  (Volume:27 ,  Issue: 9 )