Cart (Loading....) | Create Account
Close category search window
 

Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A novel ultrasonic matching layer for improving coupling between piezoelectric transducers and an air load is presented and the results of a theoretical and experimental program of work are provided. A combination of a porous material that has very low acoustic impedance with a low-density rubber material forms the basis of the approach. These matching layers were first analyzed experimentally using scanning electron and optical microscopy to determine the microscopic structure. Air-coupled resonance measurements were then performed to reveal the acoustic parameters of the individual layers that were identified within this multilayered structure. These data were then incorporated into a conventional linear model, and this has been verified and used to study performance and produce designs. Close correlation between experiment and theory is demonstrated. The most efficient designs have been implemented in a pitch/catch air-coupled system, and an improvement in received signal amplitude of 30 dB was achieved when compared with the unmatched case.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.