Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Achievable information rates and coding for MIMO systems over ISI channels and frequency-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zheng Zhang ; Electr. Eng. Dept., Arizona State Univ., Tempe, AZ, USA ; Duman, T.M. ; Kurtas, E.M.

We propose a simulation-based method to compute the achievable information rates for general multiple-input multiple-output (MIMO) intersymbol interference (ISI) channels with inputs chosen from a finite alphabet. This method is applicable to both deterministic and stochastic channels. As an example of the stochastic MIMO ISI channels, we consider the multiantenna systems over frequency-selective fading channels, and quantify the improvement in the achievable information rates provided by the additional frequency diversity (for both ergodic and nonergodic cases). In addition, we consider the multiaccess multiantenna system and present some results on the achievable information-rate region. As for the deterministic MIMO ISI channels, we use the binary-input multitrack magnetic recording system as an example, which employs multiple write and read heads for data storage. Our results show that the multitrack recording channels have significant advantages over the single-track channels, in terms of the achievable information rates when the intertrack interference is considered. We further consider practical coding schemes over both stochastic and deterministic MIMO ISI channels, and compare their performance with the information-theoretical limits. Specifically, we demonstrate that the performance of the turbo coding/decoding scheme is only about 1.0 dB away from the information-theoretical limits at a bit-error rate of 10-5 for large interleaver lengths.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 10 )