By Topic

On decision-feedback detection of differential space-time modulation in continuous fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cong Ling ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; K. H. Li ; A. C. Kot

We show that linear prediction (LP)-based decision-feedback detection (DFD) for nondiagonal differential space-time modulation (DSTM) may suffer from a severe performance degradation in continuously fading channels. DSTM constellations that incur no degradation in LP-DFD are identified as those with a diagonal generator. To cater to other constellations, we propose a low-complexity DFD scheme by inserting decision-feedback symbols into the metric of multiple-symbol differential detection.

Published in:

IEEE Transactions on Communications  (Volume:52 ,  Issue: 10 )