By Topic

Range aggregate processing in spatial databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yufei Tao ; Dept. of Comput. Sci., City Univ. of Hong Kong, China ; D. Papadias

A range aggregate query returns summarized information about the points falling in a hyper-rectangle (e.g., the total number of these points instead of their concrete ids). This paper studies spatial indexes that solve such queries efficiently and proposes the aggregate Point-tree (aP-tree), which achieves logarithmic cost to the data set cardinality (independently of the query size) for two-dimensional data. The aP-tree requires only small modifications to the popular multiversion structural framework and, thus, can be implemented and applied easily in practice. We also present models that accurately predict the space consumption and query cost of the aP-tree and are therefore suitable for query optimization. Extensive experiments confirm that the proposed methods are efficient and practical.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:16 ,  Issue: 12 )