By Topic

Self-stabilizing real-time OPS5 production systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng, A.M.K. ; Dept. of Comput. Sci., Houston Univ., TX, USA ; Fujii, S.

We examine the task of constructing bounded-time self-stabilizing rule-based systems that take their input from an external environment. Bounded response-time and self-stabilization are essential for rule-based programs that must be highly fault-tolerant and perform in a real-time environment. We present an approach for solving this problem using the OPS5 programming language as it is one of the most expressive and widely used rule-based programming languages. Bounded response-time of the program is ensured by constructing the state space graph so that the programmer can visualize the control flow of the program execution. Potential infinite firing sequences, if any, should be detected and the involved rules should be revised to ensure bounded termination. Both the input variables and internal variables are made fault-tolerant from corruption caused by transient faults via the introduction of new self-stabilizing rules in the program. Finally, the timing analysis of the self-stabilizing OPS5 program is shown in terms of the number of rule firings and the comparisons performed in the Rete network.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 12 )