Cart (Loading....) | Create Account
Close category search window
 

Partial discharge on-line monitoring for HV cable systems using electro-optic modulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tian, Y. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Lewin, P.L. ; Pommerenke, D. ; Wilkinson, J.S.
more authors

A technique for the remote inspection and monitoring of partial discharge (PD) activity using an optical network is described. The network uses a LiNbO3, modulator to modulate the intensity of the transmitted laser light approximately proportional to the voltage applied across the modulator. The laser light is transmitted along an optical fibre and measured remotely by a high-speed optical receiver. A capacitive coupler has been used to detect partial discharge activity and act as the modulator's input voltage source. The electro-optic modulator is passive and does not require a power supply at the site of the PD detection sensor. The system has the additional advantages of being immune to electromagnetic interference, having very little signal transmission attenuation, with good sensitivity, compact size, as well as being convenient to use and safe. Both simulation experiments and practical PD tests on two cable systems have indicated that the optical system provides a feasible remote PD monitoring technique for high voltage cable systems.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.