By Topic

A hybrid algorithm using discrete cosine transform and Gabor filter bank for texture segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. N. Kachouie ; Dept. of Syst. Design Eng., Waterloo Univ., Ont., Canada ; J. Alirezaie ; P. Fieguth

Gabor filters have been widely used for texture segmentation and feature extraction, however there are important considerations regarding filter parameters, filter bank coverage in the frequency domain and feature dimensional reduction. In this paper, a texture segmentation algorithm based on a hybrid filter bank is presented. The proposed method uses a Gabor filter bank and discrete cosine transform (GDCT) to extract the optimal features for texture segmentation. To reduce the feature vector dimension a competitive network is trained to estimate the principal components of the extracted features. The feature vectors composing both Gabor and DCT features are quantized by estimated eigenvectors. The proposed method enables the use of multiple filter banks or larger filter banks consisting of a higher number of channels.

Published in:

Electrical and Computer Engineering, 2004. Canadian Conference on  (Volume:3 )

Date of Conference:

2-5 May 2004