By Topic

Preemption-aware dynamic voltage scaling in hard real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woonseok Kim ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ., South Korea ; Jihong Kim ; Sang Lyul Min

Dynamic voltage scaling (DVS) is a well-known low-power design technique for embedded real-time systems. Because of its effectiveness on energy reduction, several variable voltage processors have been developed and many DVS algorithms targeting these processors have been proposed. However, most existing DVS algorithms focus on reducing the energy consumption of CPU only, ignoring their negative impacts on task scheduling and system wide energy consumption. In this paper, we address one of such side effects, an increase in task preemptions due to DVS. We present two preemption control techniques which can reduce the number of task preemptions of DVS algorithms. Experimental results show that the delayed-preemption technique is effective in reducing the number of preemptions incurred by DVS algorithms while achieving a high energy efficiency.

Published in:

Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on

Date of Conference:

9-11 Aug. 2004