By Topic

Reducing pipeline energy demands with local DVS and dynamic retiming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Seokwoo Lee ; Adv. Comput. Archit. Lab., Michigan Univ., Ann Arbor, MI, USA ; S. Das ; T. Pham ; T. Austin
more authors

The quadratic relationship between voltage and energy has made dynamic voltage scaling (DVS) one of the most powerful techniques to reduce system power demands. Recently, techniques such as Razor DVS, voltage overscaling, and intelligent energy management have emerged as approaches to further reduce voltage by eliminating costly voltage margins inserted into traditional designs to ensure always-correct operation. The degree to which a global voltage controller can shave voltage margins is limited by imbalances in pipeline stage latency. Since all pipeline stages share the same voltage, the stage exercising the longest critical path will define the overall voltage of the system, even if other stages could potentially run at lower voltages. In this paper, we evaluate two local tuning mechanisms in the context of Razor DVS, a local voltage controller scheme that allows each pipeline stage its own voltage level, and a lower cost dynamic retiming scheme that incorporates per-stage clock delay elements to allow longer-latency pipeline stages to "borrow" time from shorter-latency stages. Using simulation, we draw two key insights from our study. First, mitigating pipeline stage imbalances render additional DVS energy savings. A Razor pipeline design with dynamic retiming finds an additional 12% energy savings over global voltage control (resulting in overall energy savings of more than 28% compared to fully-margined DVS). Second, we demonstrate that imbalances arise not only from design factors, but also from run-time characteristics. As the program (or program phase) changes, we see different logic paths in multiple stages exercised frequently, necessitating a dynamic fine-tuning of local control. This result suggests that even well-balanced pipelines could benefit from dynamic retiming.

Published in:

Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on

Date of Conference:

9-11 Aug. 2004