Cart (Loading....) | Create Account
Close category search window
 

Power utility maximization for multiple-supply systems by a load-matching switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chulsung Park ; Center for Embedded Comput. Syst., California Univ., Irvine, CA, USA ; Chou, P.H.

For embedded systems that rely on multiple power sources (MPS), power management must distribute the power by matching the supply and demand in conjunction with the traditional power management tasks. Proper load matching is especially critical for renewable able power sources such as solar panels and wind generators, because it directly affects the utility of the available power. This paper proposes a power distribution switch and a source-consumption matching algorithm that maximizes the total utility of the available power from these ambient power sources. Our method yields over 30% more usable power than conventional MPS designs.

Published in:

Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on

Date of Conference:

9-11 Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.