By Topic

Soft error and energy consumption interactions: a data cache perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lin Li ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Degalahal, V. ; Vijaykrishnan, N. ; Kandemir, M.
more authors

Energy-efficiency and reliability are two major design constraints influencing next generation system designs. In this work, we focus on the interaction between power consumption and reliability considering the on-chip data caches. First, we investigate the impact of two commonly used architectural-level leakage reduction approaches on the data reliability. Our results indicate that the leakage optimization techniques can have very different reliability behavior as compared to an original cache with no leakage optimizations. Next, we investigate on providing data reliability in an energy-efficient fashion in the presence of soft-errors. In contrast to current commercial caches that treat and protect all data using the same error detection/correction mechanism, we present an adaptive error coding scheme that treats dirty and clean data cache blocks differently. Furthermore, we present an early-write-back scheme that enhances the ability to use a less powerful error protection scheme for a longer time without sacrificing reliability. Experimental results show that proposed schemes, when used in conjunction, can reduce dynamic energy of error protection components in L1 data cache by 11% on average without impacting the performance or reliability.

Published in:

Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on

Date of Conference:

9-11 Aug. 2004