By Topic

Single-VDD and single-VT super-drowsy techniques for low-leakage high-performance instruction caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we present a circuit technique that supports a super-drowsy mode with a single-VDD. In addition, we perform a detailed working set analysis for various cache line update policies for placing lines in a drowsy state. The analysis presents a policy for an instruction cache and shows it is as good as or better than more complex schemes proposed in the past. Furthermore, as air alternative to using high-threshold devices to reduce the bitline leakage through access transistors in drowsy caches, we propose a gated bitline precharge technique. A single threshold process is now sufficient. The gated precharge employs a simple but effective predictor that almost completely hides any performance loss incurred by the transitions between sub-banks. A 64-entry predictor with 3 bits per entry reduces the run-time increase by 78%, which is as effective as previous proposals that used content addressable predictors with 40 bits per entry. Overall, the combination of the proposed techniques reduces the leakage power by 72% with negligible (0.4%) run-time increase.

Published in:

Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on

Date of Conference:

9-11 Aug. 2004