By Topic

Real-time 3D fluid simulation on GPU with complex obstacles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youquan Liu ; Inst. of Software, Chinese Acad. of Sci., China ; Xuehui Liu ; Enhua Wu

In this paper, we solve the 3D fluid dynamics problem in a complex environment by taking advantage of the parallelism and programmability of GPU. In difference from other methods, innovation is made in two aspects. Firstly, more general boundary conditions could be processed on GPU in our method. By the method, we generate the boundary from a 3D scene with solid clipping, making the computation run on GPU despite of the complexity of the whole geometry scene. Then by grouping the voxels into different types according to their positions relative to the obstacles and locating the voxel that determines the value of the current voxel, we modify the values on the boundaries according to the boundary conditions. Secondly, more compact structure in data packing with flat 3D textures is designed at the fragment processing level to enhance parallelism and reduce execution passes. The scalar variables including density and temperature are packed into four channels of texels to accelerate the computation of 3D Navier-Stokes equations (NSEs). The test results prove the efficiency of our method, and as a result, it is feasible to run middle-scale problems of 3D fluid dynamics in an interactive speed for more general environment with complex geometry on PC platform.

Published in:

Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on

Date of Conference:

6-8 Oct. 2004