By Topic

Sphere-packing bounds for convolutional codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Rosnes ; Dept. of Inf., Bergen Univ., Norway ; O. Ytrehus

We introduce general sphere-packing bounds for convolutional codes. These improve upon the Heller (1968) bound for high-rate convolutional codes. For example, based on the Heller bound, McEliece (1998) suggested that for a rate (n - 1)/n convolutional code of free distance 5 with ν memory elements in its minimal encoder it holds that n ≤ 2(ν+1)2/. A simple corollary of our bounds shows that in this case, n < 2ν2/, an improvement by a factor of √2. The bound can be further strengthened. Note that the resulting bounds are also highly useful for codes of limited bit-oriented trellis complexity. Moreover, the results can be used in a constructive way in the sense that they can be used to facilitate efficient computer search for codes.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 11 )