Cart (Loading....) | Create Account
Close category search window

Design of fully diverse multiple-antenna codes based on Sp(2)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yindi Jing ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Hassibi, B.

Fully diverse constellations, i.e., sets of unitary matrices whose pairwise differences are nonsingular, are useful in multiple-antenna communications, especially in multiple-antenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here we construct four-transmit-antenna constellations appropriate for differential modulation based on the symplectic group Sp(2). They can be regarded as extensions of Alamouti's celebrated two-transmit-antenna orthogonal design which can be constructed from the group Sp(1). We further show that the structure of Sp(2) codes lends itself to efficient maximum-likelihood (ML) decoding via the sphere decoding algorithm. Finally, the performance of Sp(2) codes is compared with that of other existing codes including Alamouti's orthogonal design, a 4×4 complex orthogonal design, Cayley differential unitary space-time codes and group-based codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 11 )

Date of Publication:

Nov. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.