By Topic

Hybrid higher-order statistics learning in multiuser detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Caamano, A.J. ; EPS-Telecomunicaciones, Univ. Carlos III de Madrid, Spain ; Rafael Boloix-Tortosa ; Ramos, J. ; Murillo-Fuentes, J.J.

In this paper, we explore the significance of second- and higher-order statistics learning in communication systems. The final goal in spread-spectrum communication systems is to receive a signal of interest completely free from interference caused by other concurrent signals. To achieve this end, we exploit the structure of the interference by designing second-order statistics detectors, such as the minimum square error, in conjunction with higher-order statistics (HOS) techniques, such as the blind source separation (BSS). This hybrid higher-order statistics (HyHOS) approach enables us to alleviate BSS algorithms of one of their main problems, that is, their sensitiveness to high levels of noise. In addition, we benefit from remarkable properties of BSS in learning such as fast learning (superefficiency) and independence of the initial settings of the problem (equivariance). We successfully applied the results of this approach to the design of multiuser detectors in code-division multiple access channels.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:34 ,  Issue: 4 )