By Topic

Blind source separation in post-nonlinear mixtures using competitive learning, Simulated annealing, and a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
F. Rojas ; Dept. de Arquitectura y Tecnologia de Computadores, Univ. of Granada, Spain ; C. G. Puntonet ; M. Rodriguez-Alvarez ; I. Rojas
more authors

This paper presents a new adaptive procedure for the linear and nonlinear separation of signals with nonuniform, symmetrical probability distributions, based on both simulated annealing and competitive learning methods by means of a neural network, considering the properties of the vectorial spaces of sources and mixtures, and using a multiple linearization in the mixture space. Moreover, the paper proposes the fusion of two important paradigms-genetic algorithms and the blind separation of sources in nonlinear mixtures. In nonlinear mixtures, optimization of the system parameters and, especially, the search for invertible functions is very difficult due to the existence of many local minima. The main characteristics of the methods are their simplicity and the rapid convergence experimentally validated by the separation of many kinds of signals, such as speech or biomedical data.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:34 ,  Issue: 4 )