Cart (Loading....) | Create Account
Close category search window
 

Enhancing genetic feature selection through restricted search and Walsh analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Salcedo-Sanz, S. ; Dept. of Signal Theor. & Commun., Univ. Carlos de Madrid, Leganes-Madrid, Spain ; Camps-Valls, G. ; Perez-Cruz, F. ; Sepulveda-Sanchis, J.
more authors

In this paper, a twofold approach to improve the performance of genetic algorithms (GAs) in the feature selection problem (FSP) is presented. First, a novel genetic operator is introduced to solve the FSP. This operator fixes in each iteration the number of features to be selected among the available ones and consequently reduces the size of the search space. This approach yields two main advantages: a) training the learning machine becomes faster and b) a higher performance is achieved by using the selected subset. Second, we propose using the Walsh expansion of the FSP fitness function in order to perform ranking on the problem features. Ranking features have been traditionally considered to be a challenging problem, especially significant in health sciences where the number of available and potentially noisy signals is high. Three real biological datasets are used to test the behavior of the two approaches proposed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:34 ,  Issue: 4 )

Date of Publication:

Nov. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.