Cart (Loading....) | Create Account
Close category search window

Frequency and bandwidth agile pulser for use in wideband applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tyo, J.S. ; Electr. Eng. & Comput. Eng. Dept., Univ. of New Mexico, Albuquerque, NM, USA ; Skipper, M.C. ; Abdalla, M.D. ; Romero, S.P.
more authors

We have developed an architecture to produce a wideband pulser that is tunable in the important parameters of pulsewidth, bandwidth, and center frequency. The pulser is based on a parallel plate Blumlein pulse-forming network (PFN) with a movable center (charge) conductor. When the center conductor is displaced from the ideal Blumlein position, the balance in the PFN is lost, resulting in a slightly ringing waveform that can be tuned. By selecting the amount of ringing, the output bandwidth of the PFN can be adjusted. Furthermore, by simply sliding the center conductor out of the PFN, the effective electrical length can be adjusted, allowing the fundamental period of the ringing waveform to be altered, thereby changing the center frequency of the output waveform. Our pulser is designed to operate in the range of 300 MHz to 2 GHz, but the architecture is scalable outside this range. In this paper, we present design and simulation results, low-voltage tests, and preliminary high-voltage (15-kV) data that is obtained with a pressurized gas trigatron designed specifically for this test fixture. The pulser is being designed for laboratory use in testing the effects of interaction of high-intensity wideband electromagnetic fields with small-scale electrical and biological systems.

Published in:

Plasma Science, IEEE Transactions on  (Volume:32 ,  Issue: 5 )

Date of Publication:

Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.