By Topic

Modeling and identification for high-performance robot control: an RRR-robotic arm case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kostic, D. ; Dynamics & Control Technol. Group, Tech. Univ. Eindhoven, Netherlands ; de Jager, B. ; Steinbuch, M. ; Hensen, R.

This paper explains a procedure for getting models of robot kinematics and dynamics that are appropriate for robot control design. The procedure consists of the following steps: 1) derivation of robot kinematic and dynamic models and establishing correctness of their structures; 2) experimental estimation of the model parameters; 3) model validation; and 4) identification of the remaining robot dynamics, not covered with the derived model. We give particular attention to the design of identification experiments and to online reconstruction of state coordinates, as these strongly influence the quality of the estimation process. The importance of correct friction modeling and the estimation of friction parameters are illuminated. The models of robot kinematics and dynamics can be used in model-based nonlinear control. The remaining dynamics cannot be ignored if high-performance robot operation with adequate robustness is required. The complete procedure is demonstrated for a direct-drive robotic arm with three rotational joints.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:12 ,  Issue: 6 )