By Topic

Exploiting spectral and spatial information in hyperspectral urban data with high resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dell'Acqua, F. ; Dept. of Electron., Univ. of Pavia, Italy ; Gamba, P. ; Ferrari, A. ; Palmason, J.A.
more authors

Very high resolution hyperspectral data should be very useful to provide detailed maps of urban land cover. In order to provide such maps, both accurate and precise classification tools need, however, to be developed. In this letter, new methods for classification of hyperspectral remote sensing data are investigated, with the primary focus on multiple classifications and spatial analysis to improve mapping accuracy in urban areas. In particular, we compare spatial reclassification and mathematical morphology approaches. We show results for classification of DAIS data over the town of Pavia, in northern Italy. Classification maps of two test areas are given, and the overall and individual class accuracies are analyzed with respect to the parameters of the proposed classification procedures.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:1 ,  Issue: 4 )