By Topic

Cross-sensor calibration between Ikonos and Landsat ETM+ for spectral mixture analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Conghe Song ; Dept. of Geogr., Univ. of North Carolina, Chapel Hill, NC, USA

Spectral mixture analysis is an algorithm that is developed to overcome the weakness in traditional land-use/land-cover (LULC) classification where each picture element (pixel) from remote sensing is assigned to one and only one LULC type. In reality, a remotely sensed signal from a pixel is often a spectral mixture from several LULC types. Spectral mixture analysis can derive subpixel proportions for the endmembers from remotely sensed data. However, one frequently faces the problem in determining the spectral signatures for the endmembers. This study provides a cross-sensor calibration algorithm that enables us to obtain the endmember signatures from an Ikonos multispectral image for spectral mixture analysis using Landsat ETM+ images. The calibration algorithm first converts the raw digital numbers from both sensors into at-satellite reflectance. Then, the Ikonos at-satellite reflectance image is degraded to match the spatial resolution of the Landsat ETM+ image. The histograms at the same spatial resolution from the two images are matched, and the signatures from the pure pixels in the Ikonos image are used as the endmember signatures. Validation of the spectral mixture analysis indicates that the simple algorithm works effectively. The algorithm is not limited to Ikonos and Landsat sensors. It is, in general, applicable to spectral mixture analysis where a high spatial resolution sensor and a low spatial resolution sensor with similar spectral resolutions are available as long as images collected by the two sensors are close in time over the same place.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:1 ,  Issue: 4 )