By Topic

Topology control of ad hoc wireless networks for energy efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Cheng, M.X. ; Dept. of Comput. Sci., Missouri Univ., Rolla, MO, USA ; Cardei, M. ; Jinhua Sun ; Xiaochun Cheng
more authors

In ad hoc wireless networks, to compute the transmission power of each wireless node such that the resulting network is connected and the total energy consumption is minimized is defined as a Minimum Energy Network Connectivity (MENC) problem, which is an NP-complete problem. In this paper, we consider the approximated solutions for the MENC problem in ad hoc wireless networks. We present a theorem that reveals the relation between the energy consumption of an optimal solution and that of a spanning tree and propose an optimization algorithm that can improve the result of any spanning tree-based topology. Two polynomial time approximation heuristics are provided in the paper that can be used to compute the power assignment of wireless nodes in both static and low mobility ad hoc wireless networks. The two heuristics are implemented and the numerical results verify the theoretical analysis.

Published in:

Computers, IEEE Transactions on  (Volume:53 ,  Issue: 12 )