By Topic

Implementation of low complexity FIR filters using a minimum spanning tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ohlsson, H. ; Dept. of Electr. Eng., Linkoping Univ., Sweden ; Gustafsson, O. ; Wanhammar, L.

In this paper we propose a method for implementation of multiple constant multiplications, as used in, for example, FIR filters. The method is shifted difference coefficient method where the differences are selected using a minimum spanning tree. By finding a minimum spanning tree of an undirected graph, corresponding to the coefficients, an implementation of a multiple constant multiplication block with low arithmetic complexity is obtained. There are algorithms that find a minimum spanning tree in polynomial time, making the proposed method computational efficient. We also propose that the differences are computed on odd coefficients only. This reduces the number of adders in an implementation further, compared to other difference coefficient methods. Several stages of differences, i.e., a set of differences is used to compute a new set of higher order differences, may also be used. We show that the proposed method give optimal, or close to optimal, results with respect to the number of additions required for a number of FIR filter implementations.

Published in:

Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean  (Volume:1 )

Date of Conference:

12-15 May 2004