Cart (Loading....) | Create Account
Close category search window
 

Dynamic processor allocation in hypercube computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Po-Jen Chuang ; Center for Adv. Comput. Studies, Univ. of Southwestern Louisiana, Lafayette, LA, USA ; Nian-Feng Tzeng

Recognizing various subcubes in a hypercube computer fully and efficiently is nontrivial because of the specific structure of the hypercube. The authors propose a method that has much less complexity than the multiple-GC strategy in generating the search space, while achieving complete subcube recognition. This method is referred to as a dynamic processor allocation scheme because the search space generated is dependent upon the dimension of the requested subcube dynamically, instead of being predetermined and fixed. The basic idea of this strategy lies in collapsing the binary tree representations of a hypercube successively so that the nodes which form a subcube but are distant would be brought close to each other for recognition. The strategy can be implemented efficiently by using shuffle operations on the leaf node addresses of binary tree representations. Extensive simulation runs are carried out to collect experimental performance measures of interest of different allocation strategies. It is shown from analytic and experimental results that this strategy compares favorably in many situations with any other known allocation scheme capable of achieving complete subcube recognition

Published in:

Computer Architecture, 1990. Proceedings., 17th Annual International Symposium on

Date of Conference:

28-31 May 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.