By Topic

Noise reduction in recursive digital filters using high-order error feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laakso, T.I. ; Lab. of Signal Process. & Comput. Technol., Helsinki Univ. of Technol., Espoo, Finland ; Hartimo, I.O.

The problem of solving the optimal (minimum-noise) error feedback coefficients for recursive digital filters is addressed in the general high-order case. It is shown that when minimum noise variance at the filter output is required, the optimization problem leads to set of familiar Wiener-Hopf or Yule-Walker equations, demonstrating that the optimal error feedback can be interpreted as a special case of Wiener filtering. As an alternative to the optimal solution, the formulas for suboptimal error feedback with symmetric or antisymmetric coefficients are derived. In addition, the design of error feedback using power-of-two coefficients is discussed. The efficiency of high order error feedback is examined by test implementations of the set of standard filters. It is concluded that error feedback is a very powerful and versatile method for cutting down the quantization noise in any classical infinite impulse response (IIR) filter implemented as a cascade of second-order direct form sections. The high-order schemes are attractive for use with high-order direct form sections

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 5 )