By Topic

Recursive EM algorithm for finite mixture models with application to Internet traffic modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Z. Liu ; Moncton Univ., NB, Canada ; J. Almhana ; V. Choulakian ; R. McGorman

In the past decade, many quantities characterizing high-speed telecommunication network performance have been reported to have heavy-tailed distributions, namely, with tails decreasing hyperbolically rather than exponentially. Since mixture distributions can approximate many heavy-tailed distributions with high precision, the paper uses mixture distributions to model Internet traffic and applies the EM algorithm to fit the models. Making use of the fact that, at each iteration of the EM algorithm, the parameter increment has a positive projection on the gradient of the likelihood function, the paper proposes a recursive EM algorithm to fit the models, and the Bayesian information criterion is applied to select the best model. To illustrate the efficiency of the proposed algorithm, numerical results and experimental results on real traffic are provided.

Published in:

Communication Networks and Services Research, 2004. Proceedings. Second Annual Conference on

Date of Conference:

19-21 May 2004