By Topic

Source localization using vector sensor array in a multipath environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Rahamim ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer Sheva, Israel ; J. Tabrikian ; R. Shavit

Coherent signals from distinct directions is a natural characterization of the multipath propagation effect. This paper addresses the problem of coherent/fully correlated source localization using vector sensor arrays. The maximum likelihood (ML) and minimum-variance distortionless response (MVDR) estimators for source direction-of-arrival (DOA) and signal polarization parameters are derived. These estimators require no search over the polarization parameters. In addition, a novel method for "decorrelating" the incident signals is presented. This method is based on the polarization smoothing algorithm (PSA) and enables the use of eigenstructure-based techniques, which assume uncorrelated or partially correlated signals. The method is implemented as a preprocessing stage before applying eigenstructure-based techniques, such as MUSIC. Unlike other existing preprocessing techniques, such as spatial smoothing and forward-backward (FB) averaging, this method is not limited to any specific array geometry. The performance of the proposed PSA preprocessing combined with MUSIC is evaluated and compared to the Crame´r-Rao Bound (CRB) and the ML and MVDR estimators. Simulation results show that the MVDR and PSA-MUSIC asymptotically achieve the CRB for a scenario with two coherent sources with and without an uncorrelated interference source. A sensitivity study of PSA-MUSIC to source polarization was also conducted via simulations.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 11 )