By Topic

An experimental study of single-event effects induced in commercial SRAMs by neutrons and protons from thermal energies to 500 MeV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dyer, C.S. ; Space Dept., QinetiQ, Farnborough, UK ; Clucas, S.N. ; Sanderson, C. ; Frydland, A.D.
more authors

Irradiations have been performed, with neutrons and protons over a wide particle energy range, on six different commercial-grade 4-Mbit SRAM parts from the manufacturers Hitachi, Toshiba, Mitsubishi, and Samsung. At energies above 20 MeV, the single-event upset (SEU) cross sections are similar for protons and neutrons. While the proton cross sections fall off rapidly below this energy due to package shielding and Coulomb barrier effects, the neutron cross sections at 14.5 MeV are close to the high energy plateau values. Four of the devices show significant thermal neutron SEU cross sections and in two cases these exceed the high energy plateau values. The most modern of the parts tested is susceptible to latchup from both protons and neutrons but the response is shifted to higher energies compared with SEU.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 5 )