By Topic

3-D isotropic imaging of environmental sources using a compact gamma camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wonho Lee ; Radiat. Meas.s & Imaging Group, Univ. of Michigan, Ann Arbor, MI, USA ; Wehe, D.K.

In this work, the three-dimensional (3-D) position information of a radiation source is determined by a compact gamma ray imaging system. Two-dimensional (2-D) gamma ray images were obtained from different positions by the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. Additionally, a CCD camera is attached to the top of the gamma camera and provides associated 2-D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 5% error for sources within 3 m and ±45° FOV. From the measured distances and camera intrinsic efficiencies ε(θ,φ) from MCNP simulations, the activity of the source was normally determined within 80% of the true value depending upon source position. The parallax between the two visual images was corrected using the inferred distance between the detector and the radiation source. The radiation image from gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image alignment more precise. Energy dependent response functions were found to be better than a fixed energy response function for ML image processing.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 5 )