Cart (Loading....) | Create Account
Close category search window

Design and evaluation of current-mode image sensors in CMOS-technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tanzer, M. ; Univ. of Technol. Dresden, Germany ; Graupner, A. ; Schuffny, R.

Three different current-mode-output CMOS image sensor structures comprising of a pixel cell and an appropriate readout circuit have been analyzed and compared with regard to their noise behavior, fixed-pattern noise (FPN), and the dynamic range. First, a standard integrating pixel cell with a readout circuit containing a voltage-to-current converter is proposed. Second, a pixel cell based on a switched current cell is analyzed. The third sensor cell uses a feedback loop to control the reverse bias voltage of the photodiode to reduce the settling time of the pixel cell and the influence of the photodiodes's dark current. The necessary amplifier is partly located in the pixel cell and partly in the readout circuit. In all sensors, correlated double sampling is used to suppress the FPN.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:51 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.