Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Design and analysis of power-CMOS-gate-based switched-capacitor boost DC-AC inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuen-Haw Chang ; Dept. & Graduate Inst. of Comput. Sci. & Inf. Eng., Chaoyang Univ. of Technol., Taichung, Taiwan

A multistage power CMOS-transmission-gate-based (CMOS-TG) quasi-switched-capacitor (QSC) boost DC-AC inverter is proposed and integrated with a boost DC-DC converter for a step-up application with AC or DC load. In this paper, using CMOS-TG as a bidirectional switch, the various topologies can be integrated in the same configuration for achieving two functions: boosting and alternating; boosting for getting a sinusoidal output in which the peak is the result of a many times step-up of the input; alternating to realize the positive/negative half sinusoidal of the output. The inverter does not require any inductive elements as inductor and transformer, so integrated circuit (IC) fabrication will be promising for realization. By using the state-space averaging technique, the large-signal state-space model of the inverter is proposed, and then both the static analysis and dynamic small-signal analysis are derived to form a unified formulation for inverter/converter. Based on this formulation, there are presented for theoretical analysis/control design, including steady-state power, conversion efficiency, voltage conversion ratio, output ripple percentage, capacitance selection, closed-loop control and stability, and total harmonic distortion (THD), etc. Finally, a six-stage QSC boost DC-AC inverter is simulated by PSPICE, and the simulations are discussed for some cases, including: 1) steady-state AC output, ripple percentage, and power efficiency; 2) transient response of the regulated inverter for load variation; 3) a practical capacitive load: electromagnetic luminescent (EL) lamp, and 4) efficiency, ripple percentage, and THD for different loads. The results are illustrated to show the efficacy of the proposed inverter.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:51 ,  Issue: 10 )