Cart (Loading....) | Create Account
Close category search window

Positive feedback frequency compensation for low-voltage low-power three-stage amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joao Ramos ; Dept. of Elektrotechniek, Katholieke Univ. Leuven, Belgium ; Steyaert, M.S.J.

The use of a new frequency compensation scheme for a three-stage operational amplifier is presented. The use of a positive feedback compensation (PFC) is employed to improve frequency response when compared to nested Miller compensation. A set of design equations is derived to give insight into the sizing of the amplifier. In addition, some characteristics relevant to the low-voltage low-power circuits using operational amplifiers have been modeled. Finally, an optimization algorithm was used with the purpose of extracting the most efficient solution. The PFC is especially suitable for driving large capacitance loads. It improves frequency response, slew rate (SR), and settling time. Small compensation capacitors make it appropriate for integration in commercial CMOS processes. With an active area of 0.03 mm2 and working at 1.5 V, the circuit dissipates 275 μW, has more than a 100-dB gain, a gain bandwidth of 2.7 MHz, and 1.0 Vμs average SR while driving a 130-pF load. Both measured frequency and transient step response show that the amplifier is stable.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:51 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.